Point Cloud Compression

MPEG’s First Standard for Immersive Media

Danillo Graziosi, Ph.D.
US Research Center
Sony Corporation of America
April 15, 2019

Copyright 2019 Sony Corporation
Industry trends for immersive content

- **Video Tech.**
 - LDR, HDR
 - HD, Full HD, 4K, 8K
 - Stereoscopy

- **Point Cloud**
 - Easy to produce
 - High quality
 - Interactivity
 - Immersion
 - Geometric primitives

- **Gaming Tech.**
Point Cloud

A set of \textit{unordered} 3D points:
- (X, Y, Z)
- (R, G, B) or (Y, U, V)
- reflectance, transparency, ...

\begin{itemize}
 \item HD \@ 30fps \rightarrow 1.5 Gbps (fixed viewpoint)
 \item 800,000 points \@ 30fps \rightarrow 2.88 Gbps
\end{itemize}

Compression is required in order to make PC useful
Sport viewing with point clouds

360° background

3D objects

HoloLens Mixed Reality Capture

3 Gbps per object
Environment mapping for autonomous driving

~20 million points

- 2,020,734,515 bytes
Point Cloud Compression

MPEG initiated the work on PCC

In April 2017 MPEG issued a Call for Proposals

First Committee Draft issued in October 2018

9 technology leading companies responded and MPEG evaluated them in October 2017

V-PCC Video-based PCC

G-PCC Geometry-based PCC
Video-based Point Cloud Compression (V-PCC or ISO/IEC 23090-5)

Encoding 3D point clouds as a set of 2D videos: color, depth and occupancy map

100,000 points @ 30fps → 360 Mbps (uncompressed)
→ 1 Mbps (MPEG PCC 2018)
Geometry-based Point Cloud Compression (G-PCC or ISO/IEC 23090-9)

Encoding 3D point clouds in their native format

100,000 points @ 10 fps → 110 Mbps (uncompressed)

24 Mbps (lossless)
CONCLUSION

Novel capturing systems and interactive 3D viewing experiences are creating *new opportunities* for future networks and technologies.

Point Cloud Compression enables interactive high quality 3D content by providing manageable bitrates and also reducing requirements in creation, transmission and rendering of 3D content.

Furthermore, V-PCC leverages the *existing hardware and software* infrastructure for rapid deployment of new immersive experiences.

PCC provides a solid framework for the *convergence* between natural and *synthetic* 3D graphics.